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Abstract—Separating the control and data planes has brought
many advantages such as greater control plane programmability,
more vendor independence, and lower operational expenses
in Software-Defined Networking (SDN). SDN deployments are
possible in a variety of contexts including Wide Area Networks
(WANs). However, the large propagation delays between the
controller and switches raise several concerns for WANs such
as performance limitations, longer routing time for flows and
sensitivity of the controller placement. To address this issue, we
propose a path label routing approach in SDN-based WANs
using OpenFlow. Through hybridizing traditional hop-by-hop
routing with path label routing, we reduce flow routing time
and controller state distributions. In addition, we present an
implement method without modifications to OpenFlow. Finally a
prototype is implemented as a proof of the method in OPNET
simulator. Experimental results demonstrate that the approach
can bring significant performance gains such as the reduction of
state distribution and the sensitivity of controller placement in
SDN-based WANs.

Keywords—Path Label Routing; WAN; Software-Defined
Networking

I. INTRODUCTION

The current WANs mainly use MPLS [1] which has a

complicated control plane. To improve the MPLS control

plane, GMPLS [2] was designed as a superset of the MPLS

control plane protocols. But GMPLS has failed in terms of

actual deployment in wide area networks as unified control

plane (UCP) for a variety of technologies C packet, time-slots,

wavelengths, and fibers [3]. In [3], the authors propose SDN-

based architecture to replace MPLS/GMPLS as it is simple,

extensible, programmable and can be gradually adopted.

Software-Defined Networking (SDN) [4] is a new emerging

network architecture that is aimed towards overcoming the

limitations of traditional networking, making networks more

dynamic, manageable, and innovative. Separation of the con-

trol and data planes in SDN significantly simplifies modifica-

tions to the network logically centralized control plane, enables

the data and control planes to evolve and scale independently.

A uniform vendor agnostic interface called OpenFlow [5]

between control and data planes has succeeded in attracting
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commercial vendors [6]. The great advantages of SDN make

the architecture a preferred deployment option in variety of

use cases including WANs. B4 [7] presented by Google is

one of the most famous SDN deployments in WANs. It has

utilized SDN approaches to achieve above 90% utilization on

many WAN links in their network.

Despite the great advantages of leveraging SDN/OpenFlow

in WANs, certain challenges still arise. Since SDN depends

on a logically centralized controller, all switches must com-

municate with the controller to obtain new state information

to forward network flows. However, WANs are usually char-

acterized by geographically dispersed network elements that

span broad areas. Therefore this naturally leads to relatively

long propagation delays between the controller and switches.

Reducing the latency in the communication process between

the controller and a switch is usually not an option in a

WAN because it is constrained by the physical topology. This

raises a need for an approach that reduces the volume of

communication between switches and the controller.

In particular, from an SDN perspective, the placement of

the controller in WAN becomes a major factor in network

design as it affects the latencies between the controller and

switches. A study in [8] has verified that optimizing the

controller placement in a SDN-based WAN is a complicated

and an expensive procedure. In addition when this procedure

is completed only a small percentage of the possible network

placements are near optimal, once again raising the need for an

approach that reduces the sensitivity of such a network design

parameter.

Due to most of the control communications involve s-

tate distributions, a method that reduces or eliminates state

distributions would have a positive impact on performance.

To address the problems related to limitations imposed by

state distribution in SDN, a variation of source routing is

proposed By Ashwood-Smith [9]. Inspired by him, Soliman

et al. discuss using Strict Link Source Routing (SLSR) in

OpenFlow detailedly [10]. But Soliman et al. just analyze it

in theory without a corresponding implementation. SlickFlow

[11] gives the specific source routing implementation which

provides links failure recovery by carrying an alternative path

message based on Slick Packet [12] in SlickFlow header. But

the implementation requires too much path information as
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well as varies the header length greatly leading to being not

conducive to hardware implementation. Moreover, OpenFlow

protocol was modified in SlickFlow and it is difficult to

promote.

To avoid modifying the existing OpenFlow protocol, this

paper presents a hybrid routing scheme, mixing traditional

hop-by-hop routing and path label routing. Path label routing

is similar to source routing, but the data packets carry only

a path label instead of full path information. Headers of path

labels are fixed length size and much shorter than that of S-

lickFlow. In MPLS, labels are local valid and will be modified

before forwarding [5]. This causes some unnecessary delay. In

comparison with labels in MPLS, ours are globally unique.

The packets using path label routing, only will be pushed

label headers in ingress switches and popped the headers in

egress switches. The intermediate switches will just rely on the

packet path label headers for forwarding but do not change the

path label headers. In regard to intermediate switches in the

paths, we can distribute corresponding flow table entries to

them during network initialization. The intermediate switches

forward the packets matched a path label directly and need no

communications with the controller.

It is impossible to allocate a path label to each path in a

large-scale network. So the hybrid approach is adopted instead

of the pure path label routing. The controller can allocate

path labels according to statistics of network characteristics

collected from the OpenFlow switches. Of course, network

operators can allocate path labels via the controller based

on business needs or traffic patterns. If a flow needs to

pass a path without a path label, the controller will perform

conventionally. The larger percentage of path label routing in

hybrid routing, the better the network performs.

Furthermore, we propose an implement method without

modifications to OpenFlow. We demonstrate the implement

method in OPNET simulator. The experimental results indicate

that through mixing path label routing the network average

latency significantly reduces.

The contributions of this work are summarized as follows:

• To our knowledge, this is the first paper that presents

mixing path label routing with conventional routing in SDN-

based WANs using OpenFlow.

• We proposes a workable implement method of path label

routing without modifications to the OpenFlow protocol.

The rest of this paper is organized as follows. First we

design our hybrid approach in Section II. In Section III, we

analyze our idea from several aspects. In Section IV, we

introduce our implementation in OPNET simulator and exhibit

results of our simulation scenarios. Finally, we conclude our

work in Section V.

II. ARCHITECTURE DESIGN

Fig. 1 highlights the main idea of the network architec-

ture. Switches are OpenFlow-enable switches in Fig. 1. They

can forward a flow using path label routing or conventional

routing. The controller is a logically centralized controller

[13] in this paper, can be a single controller in physics such

as NOX [14], Floodlight [15] and ryu [16], as well as a

physically distributed control plane, like Onix [17], HyperFlow

[18] e.g.. Whether the control plane is physically centralized

or distributed is not our concern. A study in [8] has shown one

controller often suffices. Therefore, we use a single controller

for concise description in this paper.
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Fig. 1. Overview of the hybrid routing architecture.

We mix conventional routing and path label routing using

OpenFlow. In conventional SDN/OpenFlow routing, the con-

troller determines a path for an unknown flow and sends new

flow table entries to all switches along the path concurrently

except for the ingress switch. Once all acknowledgements are

received, the controller sends a new flow table entry to the

ingress switch and the forwarding path is established. This

paper concentrates on the design of the path label routing,

and the following analysis involves the path label routing

emphatically.

A. A path with a label Identification

In MPLS, labels are local valid and will be modified

before forwarding [1]. This causes some unnecessary delay.

Contrastingly, our labels are only pushed in ingress switches

and popped in egress switches, do not be modified in each

intermediate switch. We can distribute corresponding flow

table entries to intermediate switches during network initial-

ization. The intermediate switches directly forward the packets

matched an path label and need no state distribution from the

controller.

As shown in Fig. 2, a label can identify a path between

two switches. It is worth noting that we can identify multiple

paths which have the same source and destination switches via

different labels.

Path Label-1

Path Label-2

Path Label-3

Fig. 2. Schematic diagram of path labels.
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B. Store path labels in packets
To avoid modifications of OpenFlow, we store our fixed-

length labels in OpenFlow support header fields. According

to the last OpenFlow Specification [19] until now, there are

three header fields suitable for storing, which are MPLS header

field, VLAN header field and PBB header field. This paper

uses VLAN header field, the simplest among them, as storage

place of labels. In VLAN header, there are 12 bits of VLAN

ID and 3 bits of VLAN priority [20] for storing use. It can

provide up to 32768 label identifications. In view of a VLAN

header probably already exists in users’ data packets, we use

VLAN header field of QinQ [21]. Switches push the VLAN

header must contain the appropriate QinQ header field type

indication (0x88a8). Fig. 3 exhibits a VLAN tagged frame and

a QinQ tagged frame. The gray fields displayed in Fig. 3 are

used for storing labels. It is worth mentioning that SlickFlow

header requires several hundred bits [11] while ours is 12 bits.

Therefore, the header size of path label routing leads to lower

transmission latency than that of SlickFlow.
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Control,

ID,etc
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Data
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FCS

Fig. 3. VLAN frame versus QinQ frame.

C. Failure and modifications of path labels
1) Idle timeout and remove of path labels: The controller

can decide idle timeout intervals of path labels. The corre-

sponding flow table entries will time out after the intervals

with no received traffic and the switches sends flow removed

messages to notify the controller. Certainly, for optimization,

management or other reasons, the controller can remove

path labels initiatively by removing corresponding flow table

entries. But the controller must establish an alternative path

for the flows firstly. The timeout and removed labels’ identi-

fications will be reused by the controller.
2) Smooth Handover: If two paths with the same source

and destination addresses are identified with two labels, we

can handover the traffic from one to the other smoothly. To

accomplish this task, the controller merely needs to modify

the push label entry in the ingress switch replacing the pushed

label with the other. This feature is extremely convenient to

balance traffic load and failure recovery.

D. Link failure recovery
In [22], the authors use fast-failover type of the group-

entry[19] to switch traffic from the faulty path to the fault-

free alternative path upon failure. They simulate in high

speed testbed using German backbone network topology, the

simulation results are satisfied. In an analogous manner, path

label routing adopts the same program and stores an alternative

path label in group-entry. Table I describes main components

of a group-entry in a group table. We put fast-failover type

indication in Group Type field and an alternative path label

change action in action buckets.

TABLE I
MAIN COMPONENTS OF A GROUP-ENTRY IN A GROUP TABLE.

Group Identifier Group Type Counters Action Buckets

An example as shown in Fig. 4, when the link between

switch b and switch d fails, switch b can replace the label-1
with the label-2 for correct forwarding. The general approach

in our local protection as follows. For a path has link l(i, j)
and l(j, k), where i, j and k are nodes in the path. When

l(i, j) fails, a typical treatment in our approach is to make a

bypass link from i to j replace the original link. Therefore,

link failure conditions can be handled locally in this approach.

Unfortunately, there is no alternative path label to handle a link

failure, the switch will inform the controller to decide how to

deal with it.

b

a

d

e

c

Path Label-1

Path Label-2

Change Label-1 to Label-2

Send to c

Fig. 4. A demonstration of link failure recovery.

III. ANALYSIS OF PERFORMANCE

A. State distribution
Using the path label routing, as shown in Fig. 5, new state

information will be pushed to only the ingress switch, instead

of having to distribute states to each switches along the path.

Assuming the number of switches in an path to be five, the

controller only needs to distribute one-fifth the amount of

states distributed if traditional OpenFlow is used.

Controller

...

Label Rou�ng

Tradi�onal 

Rou�ng

S D...

S D...

Distribute flow entry

Acknowledge reply

Fig. 5. Schematic diagram of state distributions.

This significant state reduction directly improves the net-

work average latency and reduces the sensitivity of controller

placement. The ratio of the state reduction in a path is[10]:
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state reduction =
n− 1

n
× 100% (1)

where n is the number of switches in an path. The curve of

state reduction displays in Fig. 6.
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Fig. 6. State reductions with different path lengths.

B. Sensitivity of controller placement

As mentioned earlier, from an SDN perspective, the place-

ment of the controller in WAN becomes a major factor in

network design as it affects the switch-to-controller latencies.

Optimizing the controller placement in wide area software-

defined networks is complicated and expensive. In addition

when this optimizing procedure is completed only a small per-

centage of the possible network placements are near optimal.

Fortunately, the path label routing can reduce the sensitivity

of such a network design parameter.

When the percentage of path label routing large enough,

we can consider distributed state reductions of the network

equal to that of path label routing analysed above. In this

situation, the controller sends state information to ingress

switches only. From the perspectives of unknown flows, the

time of building paths improves a lot. Therefore, to a certain

extent the sensitivity of controller placement reduces. We

prove it through simulating in Section IV.

C. QoS

Utilizing meter table in OpenFlow [19], we have been able

to achieve essential QoS. Table II describes main components

of a meter entry in a meter table. Each meter entry is identified

by its meter identifier and contains:

• Meter Identifier: a 32 bit unsigned integer uniquely

identifying the meter.

• Meter Bands: an unordered list of meter bands, where

each meter band specifies the rate of the band and the way to

process the packet.

• Counters: updated when packets are processed by a meter.

TABLE II
MAIN COMPONENTS OF A METER ENTRY IN A METER TABLE.

Meter Identifier Meter Bands Counters

Per-flow meters enable OpenFlow to implement various

simple QoS operations, such as rate-limiting, and can be

combined with per-port queues to implement complex QoS

frameworks, such as DiffServ [23]. Our hybrid routing ap-

proach makes it more practical and convenient. Through

establishing dedicated and alternative path labels in advance,

it is easy to meet QoS demands.

IV. SIMULATION AND RESULTS

In this section, we try to implement our idea in OPNET sim-

ulator ver14.5. The Open Science, Scholarship and Services

Exchange (OS3E) [24] has a 34-node SDN across the US to

support advanced global scientific research. In this paper, we

use OS3E topology to simulate. Fig. 7 shows the simulation

topology of OS3E in OPNET.

Fig. 7. Simulation topology of OS3E.

Owing to OS3E mainly use Juniper T1600 and MX960 as

infrastructures, we assume all port rates of OpenFlow switches

are 10GbE in our experiments. Considering a fair estimation as

the effect of an error on the propagation delay in a fiber link,

the link speed would be minimal the speed of light in Fiber

(2× 108m/s). With respect to the controller, we adopt NOX-

MT [25] which can handle 1.6 million requests per second on

an eight-core machine with 2GHz CPUs. The processing time

of the controller to handle requests obeys negative exponential

distribution as shown in the following equation:

f(x) =

{
λe−λx x ≥ 0
0 x < 0

(2)

where x is processing time, and 1
λ is the average processing

time.

In order to highlight the influence of conventional routing

and path label routing, we make some simplification. All flows

transport through shortest paths calculated by the controller

with Dijkstra algorithm. The controller distributes different

labels for each shortest paths. Different flows between a pair

of switches can be forwarded in conventional routing or path

label routing decided by the controller. When the controller

decide the routing mode of a flow, the controller will send new

flow table entries to related switches as described in Section

II, and the forwarding path is established. The mixing ratio

mentioned below in the simulation refers the proportion of

flows adopted path label routing in all flows. Unless otherwise

stated, latency of a flow means the interval between the

generation and arrival of the first packet of the flow in this

paper.
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A. Performance in terms of different mixing ratio

We firstly test the performances in different mixing ratio

with increasing numbers of total flows in the network. If

mixing ratio is 50%, an unknown flow has the probability of

fifty percent to forward with path label routing. The position

of the network controller was chosen in Chicago based on the

analysis results from [8] so as to minimize average latency

from the network switches to the controller. As shown in Fig.

8, average delay of flows increases while the number of total

flows increases due to increasing traffic load. Obviously, it

indicates that the larger mixing ratio of path label routing leads

to the lower network latency.

0

0.05

0.1

0.15

0.2

0.25

11220 22440 33660 44880 56100 67320 78540 89760 100980 112200

a
v
e

ra
g

e
 d

e
la

y
 o

f 
fl

o
w

s 
(m

s)

number of total flows 

0%

25%

50%

75%

100%

Fig. 8. Latencies in different mixing ratio networks with increasing numbers
of total flows.

B. Impact of different intervals of flow table entry timeout

The longer the time interval of flow table entry timeout,

the more possible switches can handle a new flow locally.

The average latency of the network is positively related with

the interval. However, the interval cannot be too lager result

from the problem of flow table expansion. We can draw a

conclusion from the following experiments that path label

routing can improve the average latency even when the interval

of flow table entry timeout reduces. We measure the network

average latencies of flows under the following conditions that

the intervals are set to 60 seconds, 120 seconds, 180 seconds,

240 seconds and 300 seconds, respectively. The number of

total flows is more than 112 thousands.

Taking the average latencies of the network whose timeout

interval equals to 300 seconds as a reference object, the

increasing rates of the average latencies with other intervals

are displayed in Fig. 9. We can see that increasing rate is

negatively correlated with percentage of path label routing.

C. Performance in terms of different controller placements

For a network graph G(V,E) where edge weights represent

distances, where d(ν, s) is the distance of the shortest path

from node ν ∈ V to s ∈ V , and the number of nodes n = |V |,
the average distances for a placement of controllers Lavg(s)
is:
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Fig. 9. Increasing rates diagrams, (a) timeout interval is 240 seconds, (b)
timeout interval is 180 seconds, (c) timeout interval is 120 seconds, (d) timeout
interval is 60 seconds.

Lavg(s) =
1

n

∑
ν∈V

d(ν, s) (3)

Fig. 10 exhibits the average distances of all cities in OS3E

topology. Chicago has the shortest average distance which

means minimum average latency. The result corresponds to

[8]. We can see that Vancouver has the largest distance nearly

twice as large as the shortest one, and the distance of Denver

is the median.
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Fig. 10. The average distances for controller placements of cities in OS3E.

We measure the network average latencies of flows with the

controller placed in Chicago, Denver and Vancouver, respec-

tively. The number of total flows is more than 112 thousands.

Taking the average latency of the network containing 0% path

label routing and the controller placement is Chicago as a

reference object, the change rates are exhibited in Fig. 11. We
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can see that as the percentage increases, the average latencies

of Denver and Vancouver increase less, even that starting from

40% in Denver the latencies less than the latency of Chicago’s.

It also indicates that the latencies of controller placement in

Vancouver with the percentage of path label routing large

enough can less than that in Chicago with 0% path label

routing. From the results we can arrive at the conclusion

that path label routing is an effective approach reducing the

sensitivity of controller placement. It proves again that the

approach can bring significant gains in SDN performance in

WANs.
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Fig. 11. Change rate comparing to controller placement in Chicago with
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V. CONCLUSION

In this paper, we propose a path label routing approach

in SDN-based WANs and mix it with conventional routing

using OpenFlow. Moreover, we propose a workable imple-

ment method of path label routing without modifications to

the OpenFlow protocol. Finally, we implement our idea in

OPNET simulator. Both results of analyses and experiments

demonstrate that under the conditions that having enough

label resources or most flows traffic involving path labels, the

network average latency and state distribution will significantly

reduce. In other words, the larger percentage of path label

routing in hybrid routing, the better the network performs.
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